31 research outputs found

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction

    A superconducting microwave multivibrator produced by coherent feedback

    Full text link
    We investigate a coherent nonlinear feedback circuit constructed from pre-existing superconducting microwave devices. The network exhibits emergent bistable and astable states, and we demonstrate its operation as a latch and the frequency locking of its oscillations. While the network is tedious to model by hand, our observations agree quite well with the semiclassical dynamical model produced by a new software package [N. Tezak et al., arXiv:1111.3081v1] that systematically interpreted an idealized schematic of the system as a quantum optic feedback network.Comment: 9 double-spaced pages, 5 figures and supplement. To appear in Phys. Rev. Let

    Remnants of semiclassical bistability in the few-photon regime of cavity QED

    Full text link
    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled 133^{133}Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (∼10\sim10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing.Comment: 14 pages, 7 figure

    An efficient all-optical switch using a lambda atom in a cavity QED system

    Full text link
    We propose an all-optical switch constructed from a two-mode optical resonator containing a strongly coupled, three-state system. The coupling allows a weak, continuous wave laser drive to incoherently control the transmission of a much stronger, continuous wave signal laser into (and through) the resonator. We demonstrate that in this simple setup the presence of a control drive with one tenth the power of the signal drive can induce near complete reflection of the signal, while its absence allows for near complete transmission. The switch can also be operated as a set-reset relay with two control inputs that efficiently drive the switch into either the reflecting or the transmitting state.Comment: 9 pages, 10 figures, v2: published versio

    Tunable coupling to a mechanical oscillator circuit using a coherent feedback network

    Full text link
    We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator coupled to one of the devices. The network features an electromechanical device and a tunable controller that coherently receives, processes and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10410^4 times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network-level of modular, quantum electromagnetic devices.Comment: 11 pages, 6 figures, final published versio

    Physical model of continuous two-qubit parity measurement in a cavity-QED network

    Get PDF
    We propose and analyze a physical implementation of two-qubit parity measurements as required for continuous error correction, assuming a setup in which the individual qubits are strongly coupled to separate optical cavities. A single optical probe beam scatters sequentially from the two cavities and the continuous parity measurement is realized via fixed quadrature homodyne photo-detection. We present models based on quantum stochastic differential equations (QSDE's) for both an ideal continuous parity measurement and our proposed cavity quantum electrodynamics (cavity QED) implementation; a recent adiabatic elimination theorem for QSDE's is used to assert strong convergence of the latter to the former in an appropriate limit of physical parameters. Performance of the cavity QED scheme is studied via numerical simulation with experimentally realistic parameters.Comment: 4 pages, 3 figure

    The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying

    Full text link
    Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon (≈0.23\approx 0.23 aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.Comment: 7 pages, 4 figure
    corecore